Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
from datetime import datetime import json import logging from pathlib import Path import shutil import sys import tempfile from xml.etree import ElementTree
import cophi import flask import numpy as np import pandas as pd from werkzeug.utils import secure_filename
from application import database
TEMPDIR = tempfile.gettempdir() DATABASE = Path(TEMPDIR, "topicsexplorer.db") LOGFILE = Path(TEMPDIR, "topicsexplorer.log") DATA_EXPORT = Path(TEMPDIR, "topicsexplorer-data")
def init_app(name): """Initialize Flask application. """ logging.debug("Initializing Flask app...") if getattr(sys, "frozen", False): logging.debug("Application is frozen.") root = Path(sys._MEIPASS) else: logging.debug("Application is not frozen.") root = Path("application") app = flask.Flask(name, template_folder=str(Path(root, "templates")), static_folder=str(Path(root, "static"))) return app
def init_logging(level): """Initialize logging. """ logging.basicConfig(level=level, format="%(message)s", filename=str(LOGFILE), filemode="w") # Disable logging for Flask and Werkzeug # (this would be a lot of spam, even level INFO): if level > logging.DEBUG: logging.getLogger("flask").setLevel(logging.ERROR) logging.getLogger("werkzeug").setLevel(logging.ERROR)
def init_db(app): """Initialize SQLite database. """ logging.debug("Initializing database...") db = database.get_db() if getattr(sys, "frozen", False): root = Path(sys._MEIPASS) else: root = Path(".") with app.open_resource(str(Path(root, "schema.sql"))) as schemafile: schema = schemafile.read().decode("utf-8") db.executescript(schema) db.commit() database.close_db()
def format_logging(message): """Format log messages. """ if "n_documents" in message: n = message.split("n_documents: ")[1] return "Number of documents: {}".format(n) elif "vocab_size" in message: n = message.split("vocab_size: ")[1] return "Number of types: {}".format(n) elif "n_words" in message: n = message.split("n_words: ")[1] return "Number of tokens: {}".format(n) elif "n_topics" in message: n = message.split("n_topics: ")[1] return "Number of topics: {}".format(n) elif "n_iter" in message: return "Initializing topic model..." elif "log likelihood" in message: iteration, _ = message.split("> log likelihood: ") return "Iteration {}".format(iteration[1:]) else: return message
def load_textfile(textfile): """Load text file, return title and content. """ filename = Path(secure_filename(textfile.filename)) title = filename.stem suffix = filename.suffix if suffix in {".txt", ".xml", ".html"}: content = textfile.read().decode("utf-8") if suffix in {".xml", ".html"}: content = remove_markup(content) return title, content # If suffix not allowed, ignore file: else: return None, None
def remove_markup(text): """Parse XML and drop tags. """ logging.info("Removing markup...") tree = ElementTree.fromstring(text) plaintext = ElementTree.tostring(tree, encoding="utf8", method="text") return plaintext.decode("utf-8")
def get_documents(textfiles): """Get Document objects. """ logging.info("Processing documents...") for textfile in textfiles: title, content = textfile yield cophi.model.Document(content, title)
def get_stopwords(data, corpus): """Get stopwords from file or corpus. """ logging.info("Fetching stopwords...") if "stopwords" in data: _, stopwords = load_textfile(data["stopwords"]) stopwords = cophi.model.Document(stopwords).tokens else: stopwords = corpus.mfw(data["mfw"]) return stopwords
def get_data(corpus, topics, iterations, stopwords, mfw): """Get data from HTML forms. """ logging.info("Processing user data...") data = {"corpus": flask.request.files.getlist("corpus"), "topics": int(flask.request.form["topics"]), "iterations": int(flask.request.form["iterations"])} if flask.request.files.get("stopwords", None): data["stopwords"] = flask.request.files["stopwords"] else: data["mfw"] = int(flask.request.form["mfw"]) return data
def get_topics(model, vocabulary, maximum=100): """Get topics from topic model. """ logging.info("Fetching topics from topic model...") for distribution in model.topic_word_: words = list(np.array(vocabulary)[ np.argsort(distribution)][:-maximum - 1:-1]) yield "{}, ...".format(", ".join(words[:3])), words
def get_document_topic(model, titles, descriptors): """Get document-topic distribution from topic model. """ logging.info("Fetching document-topic distributions from topic model...") document_topic = pd.DataFrame(model.doc_topic_) document_topic.index = titles document_topic.columns = descriptors return document_topic
def get_cosine(matrix, descriptors): """Calculate cosine similarity between columns. """ logging.info("Calculcating cosine similarity...") d = matrix.T @ matrix norm = (matrix * matrix).sum(0, keepdims=True) ** .5 similarities = d / norm / norm.T return pd.DataFrame(similarities, index=descriptors, columns=descriptors)
def scale(vector, minimum=50, maximum=100): """Min-max scaler for a vector. """ logging.debug("Scaling data from {} to {}...".format(minimum, maximum)) return np.interp(vector, (vector.min(), vector.max()), (minimum, maximum))
def export_data(): """Export model output to ZIP archive. """ logging.info("Creating data archive...") if DATA_EXPORT.exists(): unlink_content(DATA_EXPORT) else: DATA_EXPORT.mkdir() model, stopwords = database.select("data_export") document_topic, topics, document_similarities, topic_similarities = model
logging.info("Preparing document-topic distributions...") document_topic = pd.read_json(document_topic, orient="index") document_topic.columns = [col.replace(",", "").replace( " ...", "") for col in document_topic.columns]
logging.info("Preparing topics...") topics = pd.read_json(topics, orient="index") topics.index = ["Topic {}".format(n) for n in range(topics.shape[0])] topics.columns = ["Word {}".format(n) for n in range(topics.shape[1])]
logging.info("Preparing topic similarity matrix...") topic_similarities = pd.read_json(topic_similarities) topic_similarities.columns = [col.replace(",", "").replace( " ...", "") for col in topic_similarities.columns] topic_similarities.index = [ix.replace(",", "").replace( " ...", "") for ix in topic_similarities.index]
logging.info("Preparing document similarity matrix...") document_similarities = pd.read_json(document_similarities) data_export = {"document-topic-distribution": document_topic, "topics": topics, "topic-similarities": topic_similarities, "document-similarities": document_similarities, "stopwords": json.loads(stopwords)}
for name, data in data_export.items(): if name in {"stopwords"}: with Path(DATA_EXPORT, "{}.txt".format(name)).open("w", encoding="utf-8") as file: for word in data: file.write("{}\n".format(word)) else: path = Path(DATA_EXPORT, "{}.csv".format(name)) data.to_csv(path, sep=";", encoding="utf-8") shutil.make_archive(DATA_EXPORT, "zip", DATA_EXPORT)
def unlink_content(directory, pattern="*"): """Deletes the content of a directory. """ logging.info("Cleaning up in data directory...") for p in directory.rglob(pattern): if p.is_file(): p.unlink()
def series2array(s): """Convert pandas Series to a 2-D array. """ for i, v in zip(s.index, s): yield [i, v] |