Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

import pickle 

import time 

import regex as re 

import pathlib 

import bokeh.plotting 

import bokeh.models 

import bokeh.layouts 

import pandas as pd 

import threading 

import lxml 

import queue 

import socket 

import random 

 

 

TOOLS = "hover, pan, reset, wheel_zoom, zoom_in, zoom_out" 

JAVASCRIPT = """ 

var f = cb_obj.value; 

var options = %s; 

f = f.replace(/[!\"#$&\'()*+,-.:;<=>?@^_`{}~]/g, ""); 

f = f.replace(/\s/g, ""); 

 

for (var i in options) { 

if (f == options[i]) { 

console.log("Visible: " + options[i]) 

eval(options[i]).visible = true; 

} 

else { 

console.log("Unvisible: " + options[i]) 

eval(options[i]).visible = false; 

} 

} 

""" 

 

 

def compress(data, filepath): 

""" 

Dumps generated data. 

""" 

with open(filepath, "wb") as file: 

pickle.dump(data, file) 

 

 

def decompress(filepath): 

""" 

Loads dumped data. 

""" 

with open(filepath, "rb") as file: 

return pickle.load(file) 

 

 

def load_data(tempdir): 

""" 

Loads the generated data. 

""" 

data_path = str(pathlib.Path(tempdir, "data.pickle")) 

parameter_path = str(pathlib.Path(tempdir, "parameter.csv")) 

topics_path = str(pathlib.Path(tempdir, "topics.csv")) 

 

data = decompress(data_path) 

parameter = pd.read_csv(parameter_path, index_col=0, encoding="utf-8", sep=";") 

parameter.columns = [""] # remove column names 

topics = pd.read_csv(topics_path, index_col=0, encoding="utf-8", sep=";") 

 

data["parameter"] = [parameter.to_html(classes="parameter", border=0)] 

data["topics"] = [topics.to_html(classes="topics")] 

return data 

 

 

def remove_markup(content): 

""" 

Removes markup from text. If lxml fails, a simple regex is used. 

""" 

try: 

parser = lxml.etree.XMLParser(recover=True) 

tree = lxml.etree.parse(content, parser=parser) 

ns = dict(tei="http://www.tei-c.org/ns/1.0") 

lxml.etree.strip_elements(tree, "speaker", with_tail=False) 

lxml.etree.strip_elements(tree, "note", with_tail=False) 

lxml.etree.strip_elements(tree, "stage", with_tail=False) 

lxml.etree.strip_elements(tree, "head", with_tail=False) 

text = tree.xpath("//text()") 

text = "\n".join(text) 

text = re.sub(" ", "", text) 

text = re.sub(" ", "", text) 

text = re.sub("\n{1,6}", "\n", text) 

text = re.sub("\n \n", "\n", text) 

text = re.sub("\t\n", "", text) 

return text 

except: 

text = [] 

for line in content: 

line = re.sub("<.*?>", "", line) 

line = re.sub("(<.[^(><.)]+>)|<.?>", "", line) 

line = re.sub("\\n", "", line) 

line = re.sub("[ ]{2,}", " ", line) 

line = re.sub("<?(.*?)?>", "", line) 

text.append(line) 

return "".join(text) 

 

 

def boxplot(stats): 

""" 

Creates a boxplot for corpus statistics. 

""" 

x_labels = ["Document size (clean)", "Document size (raw)"] 

 

groups = stats.groupby("group") 

q1 = groups.quantile(q=0.25) 

q2 = groups.quantile(q=0.5) 

q3 = groups.quantile(q=0.75) 

iqr = q3 - q1 

upper = q3 + 1.5 * iqr 

lower = q1 - 1.5 * iqr 

 

def outliers(group): 

cat = group.name 

return group[(group.score > upper.loc[cat]["score"]) | 

(group.score < lower.loc[cat]["score"])]["score"] 

out = groups.apply(outliers).dropna() 

 

fig = bokeh.plotting.figure(tools="", background_fill_color="#EFE8E2", 

title="", x_range=x_labels, logo=None, 

sizing_mode="fixed", plot_width=500, 

plot_height=350) 

 

qmin = groups.quantile(q=0.00) 

qmax = groups.quantile(q=1.00) 

upper.score = [min([x, y]) for (x, y) in zip(list(qmax.loc[:, "score"]), upper.score)] 

lower.score = [max([x, y]) for (x, y) in zip(list(qmin.loc[:, "score"]), lower.score)] 

 

fig.segment(x_labels, upper.score, x_labels, q3.score, line_color="black") 

fig.segment(x_labels, lower.score, x_labels, q1.score, line_color="black") 

 

fig.vbar(x_labels, 0.7, q2.score, q3.score, fill_color="#729fcf", line_color="black") 

fig.vbar(x_labels, 0.7, q1.score, q2.score, fill_color="#729fcf", line_color="black") 

 

fig.rect(x_labels, lower.score, 0.2, 0.01, line_color="black") 

fig.rect(x_labels, upper.score, 0.2, 0.01, line_color="black") 

 

fig.yaxis.axis_label = "Tokens" 

fig.xgrid.grid_line_color = None 

fig.ygrid.grid_line_color = "white" 

fig.grid.grid_line_width = 2 

fig.xaxis.major_label_text_font_size = "11pt" 

fig.yaxis.major_label_text_font_size = "9pt" 

return fig 

 

 

def barchart(document_topics, height, topics=None, script=JAVASCRIPT, tools=TOOLS): 

""" 

Creates an interactive barchart for document-topics proportions. 

""" 

y_range = document_topics.columns.tolist() 

fig = bokeh.plotting.figure(y_range=y_range, plot_height=height, tools=tools, 

toolbar_location="right", sizing_mode="scale_width", 

logo=None) 

 

plots = {} 

options = document_topics.index.tolist() 

for i, option in enumerate(options): 

x_axis = document_topics.loc[option] 

source = bokeh.models.ColumnDataSource(dict(Describer=y_range, Proportion=x_axis)) 

option = re.sub(" ", "_", option) 

bar = fig.hbar(y="Describer", right="Proportion", source=source, 

height=0.5, color="#053967") 

if i == 0: 

bar.visible = True 

else: 

bar.visible = False 

plots[exclude_punctuations(option)] = bar 

 

fig.xgrid.grid_line_color = None 

fig.x_range.start = 0 

fig.select_one(bokeh.models.HoverTool).tooltips = [("Proportion", "@Proportion")] 

fig.xaxis.axis_label = "Proportion" 

fig.xaxis.major_label_text_font_size = "9pt" 

fig.yaxis.major_label_text_font_size = "9pt" 

 

options = list(plots.keys()) 

callback = bokeh.models.CustomJS(args=plots, code=script % options) 

 

if len(options) < 11: 

if topics is not None: 

selection = [" ".join(topics.iloc[i].tolist()) + " ..." for i in range(topics.shape[0])] 

menu = [(select, option) for select, option in zip(selection, options)] 

label = "Select topic to display proportions" 

else: 

menu = [(select, option) for select, option in zip(document_topics.index, options)] 

label = "Select document to display proportions" 

dropdown = bokeh.models.widgets.Dropdown(label=label, menu=menu, callback=callback) 

return bokeh.layouts.column(dropdown, fig, sizing_mode="scale_width") 

else: 

if topics is not None: 

what = "topic" 

else: 

what = "document" 

textfield = bokeh.models.widgets.AutocompleteInput(completions=document_topics.index.tolist(), 

placeholder="Type a {} name".format(what), 

css_classes=["customTextInput"], 

callback=callback) 

return bokeh.layouts.row(fig, textfield, sizing_mode="scale_width") 

 

 

def read_logfile(logfile, total_iterations): 

""" 

Reads a logfile and returns the current number of iterations. 

""" 

time.sleep(3) 

pattern = re.compile("-?\d+") 

with open(logfile, "r", encoding="utf-8") as file: 

text = file.readlines() 

line = text[-1][:-1] 

 

wait = "Still initializing LDA topic model ..." 

info = "Iteration {0} of {1} ..." 

i = pattern.findall(line)[0] 

 

if "likelihood" in line: 

return i, info.format(i, total_iterations) 

elif "n_documents" in line: 

return 0, wait 

elif "vocab_size" in line: 

return 0, wait 

elif "n_words" in line: 

return 0, wait 

elif "n_topics" in line: 

return 0, wait 

elif "n_iter" in line: 

return 0, wait 

 

 

def enthread(target, args): 

""" 

Threads a process. 

""" 

q = queue.Queue() 

def wrapper(): 

q.put(target(*args)) 

t = threading.Thread(target=wrapper) 

t.start() 

return q 

 

 

def is_connected(host="8.8.8.8", port=53, timeout=3): 

""" 

Checks if your machine is connected to the internet. 

Host: 8.8.8.8 (google-public-dns-a.google.com) 

OpenPort: 53/tcp 

Service: domain (DNS/TCP) 

""" 

try: 

socket.setdefaulttimeout(timeout) 

socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) 

return "include" 

except: 

return "exclude" 

 

 

def exclude_punctuations(s): 

""" 

Excludes punctuations from a string. 

""" 

exclude = set("!\"#$&'()*+,-.:;<=>?@^_`{}~") 

s = "".join(c for c in s if c not in exclude) 

return re.sub(" ", "", s) 

 

 

def unlink_content(directory, pattern="*"): 

""" 

Deletes the content of a directory. 

""" 

for p in pathlib.Path(directory).rglob(pattern): 

if p.is_file(): 

p.unlink()